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The linear instability of Kirchhoff s elliptic vortex in a vertically stratified rotating fluid 
is investigated using the quasi-geostrophic, f-plane approximation. Any elliptic vortex 
is shown to be unstable to baroclinic disturbances of azimuthal wavenumber m = 1 
(bending mode) and m = 2 (elliptical deformation). The axial wavenumber of the 
unstable bending mode approaches A, = 1.7046 in the limit of small ellipticity, 
indicating that it is a short-wave baroclinic instability. The instability occurs when the 
bending wave rotates around the vortex axis with angular velocity identical to the 
rotation rate of the undisturbed elliptic vortex. On the other hand, the wavenumber of 
the elliptical deformation mode approaches zero in the same limit, showing that it is 
a long-wave sideband instability. 

1. Introduction 
A concentrated vorticity region often appears as a coherent structure in geophysical 

flows, where the fluid motions are subjected to the strong influence both of the Coriolis 
force and the density inhomogeneity associated with temperature and/or salinity 
variations. Vertical vortices (which here means those with vertical vorticity 
component), such as the ‘Meddies’ in the ocean, keep their identity for a very long 
time. The motion and stability of these vortices embedded in a stratified rotating fluid 
is an important aspect of the understanding of the physical mechanisms of energy and 
momentum transport in geophysical flows. 

Geophysical fluid motions are often well described by a quasi-geostrophic 
approximation (e.g. Pedlosky 1979) and many investigations on vortex instability have 
been performed based on the quasi-geostrophic, fplane equations. For instance, Flierl 
(1988) solved the normal-mode equations analytically for a class of isolated model 
vortices with piecewise-constant velocity. He showed that a ‘ baroclinic’ instability 
mode becomes more unstable than barotropic modes, if the scale of the whole vortex 
is small compared to the radius of deformation. Similarly, Gent & McWilliams (1986) 
and Carton & McWilliams (1989) solved numerically the normal-modes equations for 
several continuous vorticity profiles. They reported that the fastest growing 
perturbation is often ‘ baroclinic’ (they called it an internal instability). The ‘ baroclinic’ 
instability is sometimes called the ‘internal barotropic’ instability, but we follow the 
terminology of Flierl throughout this paper. 

The basic flows considered by these previous studies are axisymmetric. Some 
theoretical results have been given for the stability of circular vortices using conserved 
quantities such as the energy, the angular momentum and the area enclosed by an 
isovorticity line. Dritschel (1988~) proved the nonlinear (Liapunov) stability of a 
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vortex patch with uniform vorticity and of vortices with radially monotonically 
decreasing potential vorticity. Kloosterziel & Carnevale (1992) considered vortices with 
general vorticity distribution. They constructed a conserved quantity such that the first 
variation is zero and the second variation is positive or negative definite (formal 
stability), and showed that the linear barotropic stability regime for a circular vortex 
coincides with the formal barotropic stability regime. In finite-dimensional systems 
formal stability implies nonlinear stability whereas in infinite dimensions it is not a 
necessary prerequisite for nonlinear stability. 

We consider the linear stability of an elliptic vortex patch in this paper. Specifically, 
we consider Kirchhoff s elliptic vortex, a vortex patch with uniform vorticity wo inside 
an ellipse whose major and minor semi-axes are a and b. If it is embedded in an 
irrotational fluid, it rotates solidly with a constant angular velocity SZ = a,, ab/(a+b)2. 
Love (1893) studied the linear barotropic stability of Kirchhoff s elliptic vortex and 
showed that it becomes unstable to disturbances with azimuthal wavenumber 3, if the 
ratio a /b  is greater than 3. Meacham (1992) considered the stability of quasi- 
geostrophic ellipsoidal vortices, extending Love's work. He determined the dispersion 
relations of normal modes utilizing the expansions in ellipsoidal harmonics (Lame 
functions). He demonstrated that unstable modes exist over a considerable range of the 
geometrical parameters that characterize the ellipsoid. In this study, we consider the 
baroclinic instability of Kirchhoff s elliptic vortex. This may be covered by Meacham's 
analysis as a limiting case of (his parameters) a, p- 0 with a lp  being fixed. However, 
Meacham did not pay special attention to this parameter region and a separate analysis 
is necessary in order to obtain refined information. To obtain the physical 
interpretation of the instability, it is helpful that we consider a geometrically less 
complicated case. 

We formulate the eigenvalue problem for normal modes in $2. The perturbation 
streamfunctions are expanded in terms of the Mathieu functions, since an elliptic 
vortex is considered. The eigenvalues are determined numerically after truncating the 
expansions at some finite order. The results of the stability analysis are demonstrated 
in $3. Any ellipse (irrespective of a/b)  is shown to be unstable to baroclinic 
disturbances with azimuthal wavenumbers m = 1 and m = 2. In $4, we consider the 
physical mechanisms of instabilities in the limit of small ellipticity, where the cause of 
the twisting instability (rn = 1) is shown to be a resonance between the baroclinic 
inertial (bending) wave and the barotropic m = 2 (elliptical deformation) wave, 
whereas the m = 2 baroclinic instability is thought of as a sideband (Benjamin-Feir) 
instability. The relation of our results to Dritschel's nonlinear-stability criterion is 
discussed there. The last section is devoted to summary 

2. Formulation 
The fluid is assumed to be inviscid, incompressible and stably stratified. Our 

reference frame is rotating with an angular velocity g a b o u t  the vertical axis z. The 
quasi-geostrophic equations of motion (conservation of the potential vorticity : e.g. 
Pedlosky 1979) on thef-plane are written in terms of a streamfunction II. as 

1 a a$ a a $ a  -+----- [V"LJ$ = 0. [ at ayax axay 

The Cartesian coordinates (x, y, z) are used with the corresponding unit vectors e,, e, 
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and e,. Here, V2 = a2/ax2 + a/ay2 denotes the Laplacian operator in the horizontal 
plane, and L, is a differential operator representing the effect of stratification, given by 

for atmospheric synoptic-scale motions or by 

for oceanic synoptic-scale motions. Here p,(z) is the density of a 'standard' atmosphere 
and S(z) is the stratification parameter (see Pedlosky 1979,96). The explicit form of L, 
is not required in the following stability analysis. The streamfunction is here defined by 
(see Love 1983)., 

u = a$/ay, v = -a$/ax. (3) 

The streamfunction inside Kirchhoff s elliptic vortex is given by 

!Pin = - ( b 2  + ay2)/2(a + b), (4) 

where the uniform (relative) vorticity in the interior of the ellipse is taken to be unity 
and a is the major semi-axis and b is the minor semi-axis. Kirchhoff s elliptic vortex 
rotates rigidly about the z-axis with a constant angular velocity 

( 5 )  

The elliptic-cylinder coordinates (<, 7, z )  are convenient in describing the geometry of 

x = ccosh<cosy, (6 4 the basic flow field: 

y = csinhtsiny, 0 < 7 < 2n, (6 b) 

52 = ab/(a + b)'. 

where c = (a2-b2)i. In these coordinates, the boundary of the elliptic vortex is 
represented by 

(7) 

and the streamfunction outside the vortex is written as 

Since the basic flow is uniform in the vertical direction, we can introduce the normal- 
mode disturbances of the form 

where f(z) denotes the eigenfunction of a Sturm-Liouville problem associated with the 
differential operator L,. With appropriate boundary conditions, f(z) corresponds to the 
eigenvalue h by 

(10) L,f(z) = - h2.z). 

The boundary of the vortex patch is assumed to deform as 

= to + e F ( ~ ) f ( z )  eciUt. 

Our objective is to determine the dispersion relation o(h). If it has a positive imaginary 
part, the vortex is known to be unstable to the mode corresponding to the value of A. 

We consider, solely, the perturbations that do not introduce additional potential 
vorticity. In other words, the disturbance streamfunctions (both inside and outside of 
the ellipse) obey the Helmholtz equation 

(V2 + L,) A,, , , t m  = 0, 
9-2 
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or (v2 - h2) $in, o u t ~ z )  = 0, 

At O(e), the kinematical boundary condition that the boundary of the vortex path 
continues to be the boundary is written, on t; = cn, as 

where h2 denotes the metric factor, i.e. 

The dynamical condition on t; = t;, is the continuity of tangential velocity, which is 
identical to the condition of pressure continuity : 

h2 = $?(Gosh ~ ~ ; - c o s  29). 

We determine the eigenvalues numerically, based on a Galerkin method. In the 
elliptic-cylinder coordinates, the Helmholtz equation (12) has the form 

(1 5 )  1 a 2  a 2  
~ ,+,-2q(~0~h2t;-~0~2y) $in,lrut = 0 [.r 87 

with q = $&2, 

which is separable. The solutions are expanded in terms of the mathieu functions as 
m 

&in = C [A; ce,m-,(~, - 4)  ~e2m-1(t;> - 4) + B; se,m-1(7, - 4) ~e2m- 

&:,t = c [G ce,,-1(9, - 4) Ke2m-l(t;, 4)  + 0; se,,-,(q, - 4)  Ko,,-,(t;, 411, 

&;% = c [A% ce,,-,(% - 4) Ce,,-,(t;, - 4) + K se,m(9, - 4) Se,,(t;, - 411, 

Y k t  = c [C cezm-2(9, - 4) Kezm-2(5,4) + 0% sezm(9, - 4) Ko,,(t;, 411, 

- 411, 
m = l  

(164  

(1 6 b) 

(174  

(17b) 

co 

m = l  

m 

m=1 

m 

m=l 

where the solution with the superscript o l e  is 2.n-periodic (odd)/n-periodic (even) in the 
variable 7. They are decoupled because of the Z,-symmetry of the basic flow field, i.e. 
because Kirchhoff s elliptic vortex is .n-periodic in 7. The functions ce and se denote the 
Mathieu functions and Ce, Se, Ke and KO are the modified Mathieu functions (see e.g. 
Abramowitz & Stegun 1972). Robinson & Saffman (1984) used similar expansions in 
an analysis of the three-dimensional instability of an elliptical vortex in a straining 
field. The characteristic values and the functional values of the Mathieu functions (and 
the modified Mathieu functions Ce and Se) are computed using appropriate routines 
and their modifications (e.g. Clemm 1969; Blanch 1966; Sale 1970). The functional 
values of the modified Mathieu functions Ke and KO are determined by integrating the 
governing equation numerically (see, for details, Robinson & Saffman 1984). 
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As the procedure of the formulation of the eigenvalue problem is well known, we will 
outline only the case of the odd modes. We notice from the boundary conditions (13a) 
and (13b) that = &out(<o). Then we introduce the new coefficients E and F 
instead of A ,  B, C and D,  as 

( 1 8 )  D& = F", 
K02m-l(t", 4)' 

Eliminating h2F from (1 3 a) using (14), we have 

where primes denote differentiation with respect to to or 7. Truncating the expansions 
at a finite order N ,  making the products of (19) with ce21-l(q, -4) and se2L-l(q, -4) 
(1 < 1 < N :  Galerkin method), and integrating from 0 to 27c, we obtain the following 
matrix-type relation : 

(iwA - B) (i) = 0. (20) 

G 
Here the matrix A is a 2 N x 2 N  diagonal matrix. The eigenvalues o and the 
eigenvectors (E;, q)' of the matrix -iA-lB (2N x 2 N )  are calculated numerically using 
the QR method. The truncation order N ,  which is typically 20, is increased up to 40 
when it is necessary to achieve accuracy of four significant figures. The eigenvalues 
form either real pairs or pure imaginary pairs of opposite sign. In the latter pairs, one 
with positive imaginary part corresponds to an unstable mode. Using the eigenvectors 
(E;, y)' thus obtained, the disturbance streamfunction & can be calculated by (16a, b)  
and (18). The stability characteristics are illustrated in the next section. 

3. Results 
Since the odd (2.n-periodic) and even (n-periodic) modes are decoupled completely, 

we will describe the results for the odd modes in $3.1 and those for the even modes in 
$3.2, separately. 
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FIGURE 1. Dispersion relation w(h) of the odd modes for ellipses of (a) a / b  = 2, (b) a /b  = 3, 
(c) a /b  = 3.5 and ( d )  a /b  = 4. The horizontal axis is the vertical wavenumber h and the vertical axis 
is the calculated w(h). Solid lines trace real (stable) w(h)  and broken lines represent pure imaginary 
(unstable) w(h). 

3.1. 2n-periodic (odd) modes 
We show in figure 1 (a-d) the calculated dispersion relation for the cases a/b = 2, 3, 3.5 
and 4, respectively. The horizontal axis is the vertical wavenumber A (the eigenvalue of 
L,) and the vertical axis is the real or imaginary part of w. Solid lines trace real (stable) 
w and broken lines represent pure imaginary (unstable) w .  In the limit of A-0,  our 
results agree with Love's barotropic result for w ,  given by 

w 2  = 4 [ ( 0 ' - 1 ) y 3 2 m ] .  1 2mab 

Here, the integer m is the azimuthal wavenumber. For a /b  < 3, all the barotropic 
modes ( A  = 0) are stable, as we can see in Figure 1 (a,  6). When a /b  is larger than 3, 
the m = 3 mode grows exponentially (figure 1 c, d) ,  whereas other modes remain stable. 

It is remarkable that there is a A-range (0.88 < A < 1.70) where the bending mode 
( m  = 1) grows even for the barotropically stable ellipse of a/b  = 2 (figure l a ) .  This 
unstable range is away from the w-axis, indicating that the instability is a short-wave 
instability. We depict the perturbed vortex boundary and the disturbance 
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FIGURE 2. (a) Perturbed vortex boundary of the ellipse of a /b  = 2. The disturbance has vertical 
wavenumber h = 1.25 and the characteristic azimuthal wavenumber m = 1. (b) Disturbance 
streamlines. The hatched region corresponds to negative values of the streamfunction. 

streamfunction for h = 1.25 in figures 2(a) and 2(b), respectively. We can see clearly 
that the instability mode has an azimuthal wavenumber 1 and a phase shift of about 
f . ~ :  (to the major semi-axis). The shape of the deformed vortex patch resembles contours 
of constant height (Meacham 1992, figure 17) of an unstable (M2I mode) ellipsoid with 
semi-axes of 1/2,  1 /1 /2  and 1. 

The case of a / b  = 3 (figure 1 b) is marginal. The m = 3 mode is just destabilized at 
the long-wave limit ( A  + 0). The short-wave instability is also enhanced as a/b becomes 
larger. The instability ranges of the short-wave (m = 1 )  mode and the long-wave 
(m = 3 )  mode merge when a / b  is increased above 3.5 (figure 1 c, d). Two instability 
modes are observed in figure l ( d ) ,  where the major (stronger) mode has a wider 
instability A-range (0 < h < 2.10) and the minor has a narrower A-range (0.45 < 
h < 0.63). It is not appropriate that we call the major one the ‘ m  = 3 mode’ and the 
minor one the ‘ m  = 1 mode’, since, as we will also see in figures 3-5, the characteristic 
azimuthal wavenumber of the major mode changes from 3 to 1 as h increases. On the 
other hand, the azimuthal wavenumber of the minor mode changes from 1 to 3 as h 
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FIGURE 3. (a) Perturbed vortex boundary of the ellipse of a/b  = 4. The disturbance has the vertical 
wavenumber h = 0.1 and the characteristic azimuthal wavenumber m = 3 .  (b) Disturbance 
streamlines. 

increases. Figures 3-5 show the perturbed vortex boundary (parts a)  and the 
disturbance streamfunction (parts b) for h = 0.1, 0.55 and 1.0, respectively. We can 
observe the change of the characteristic azimuthal wavenumber. The vortex boundary 
in figure 3(a) (m = 3 mode) has a slight resemblance to that of Meacham’s M31 
unstable mode (Meacham 1992, figure 18), although the ratio a /b  is not the same. The 
reason why such mode coupling occurs is that the basic flow field is not axisymmetric 
but has only 2,-symmetry. It is also found in quantum-mechanical band calculations 
that two curves representing two energy levels do not cross each other but split. 

As a/b is increased further, higher mode will be destabilized successively. An 
instability mode that continues to a barotropic mode of azimuthal wavenumber larger 
than or equal to 3, is essentially a long-wave instability. The bending mode (m = 1) for 
a / b  < 3, in contrast, is essentially a short-wave instability. Figure 6 shows contours of 
constant growth rate in the (A,  a/b)-plane, where the horizontal axis is the vertical 
wavenumber A, the vertical axis is the aspect ratio a / b  and the contour interval is 0.01. 
It is remarkable that Kirchhoffs elliptic vortex is unstable to the bending mode 
(m = 1) irrespective of a/b for a certain range of h and that the unstable region touches 



Baroclinic instability o j  Kirchhofs  elliptic portex 26 1 

FIGURE 4. As figure 3 but for h = 0.55 and a vague characteristic azimuthal wavenumber. 

the A-axis at A = A, = 1.7046. Close examination shows that the growth rate of the 
bending mode is proportional to a /b -  1, when it is close to 0. Using figure 6, we can 
judge whether an ellipse of a given aspect ratio a / b  is stable or unstable, if the spectrum 
{A,} of the Sturm-Liouville problem (10) is known. We will consider the physical 
mechanism of the instability in $4, where the meaning of the critical wavenumber A, 
is explained. The origin of the instability is traced back to the resonant interaction 
between the bending baroclinic wave (m = 1) and the m = 2 barotropic wave. 

3.2. K-periodic (even) modes 
Regarding even modes, Love’s formula (21) tells that any barotropic mode is stable 
until a / b  exceeds 4.612, where the m = 4 mode destabilizes first. Figure 7, on the other 
hand, shows that there is an unstable A-range (0 < h < 0.85) even for a barotropically 
stable ellipse of a / b  = 2. It is an m = 2 baroclinic instability, which can also be seen 
from the shape of the deformed vortex patch and the perturbation streamfunction in 
figures 8(a)  and 8(b)  ( A  = 0.5). Although the growth rate vanishes in the limit of 
A + 0, the instability region is attached to the a/b-axis and the instability is thought of 
as a long-wave instability. The physical mechanism of this instability seems to be 
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FIGURE 5.  As figure 3 but for h = 1.0 and the characteristic azimuthal wavenumber m = 1. 

related to a sideband instability (Benjamin-Feir instability) of finite-amplitude 
barotropic waves. We will discuss this in more detail in the following section. 

Figure 9 depicts contours of constant growth rate in the (A,a/b)-plane. Only the 
m = 2 mode appears in the parameter region described in this figure (a/b < 4). Any 
ellipse is unstable to the m = 2 baroclinic mode irrespective of the value of a/b.  The 
growth rate increases and the unstable A-range becomes wider as the ratio a /b  
increases. Close examination shows that the growth rate decays like (a /b -  l)z in the 
limit a/b + 1. From figure 9, we can judge whether an ellipse is stable or unstable to 
n-periodic disturbances, if information about the spectrum {A,} of the Strum-Loiuville 
problem (10) is provided. 

We will comment briefly on the spectrum {A,} of the Sturn-Liouville problem (10) 
before closing this section. The differential operator L, takes a simple form when the 
fluid has a constant Brunt-Vaisalb frequency N,. In the case of the oceanic synoptic 
scale, (2b) becomes 
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1 2 a 
FIGURE 6. Contours of constant growth rate of the odd instability modes. The horizontal axis is the 
vertical wavenumber h and the vertical axis is a/b.  The contour interval is 0.01. The instability region 
touches the A-axis at A, = 1.7046. 

1 

0 1 2 3 4 

a 
FIGURE 7. Dispersion relation w(h)  of the even modes for the ellipse of a/b  = 2. The horizontal axis 
is the vertical wavenumber A and the vertical axis is the calculated w(h). Solid lines trace real (stable) 
w(h)  and broken lines represent pure imaginary (unstable) w(A). 

where L, = N ,  D/fis the internal Rossby radius of deformation, and L and D denote 
the horizontal and vertical lengthscales, respectively (see Pedlosky 1979, 96). Imposing 
the condition of no tangential stress at the upper (z = 1) and lower ( z  = 0) boundaries, 
implies that 

and we obtain the spectrum {A, = nnL/L,: n is an integer}. Thus, an ellipse whose 
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FIGURE 8. (a)  Perturbed vortex boundary of the ellipse of a / b  = 2 The disturbance has the vertical 
wavenumber h = 0.5 and the characteristic azimuthal wavenumber m = 2. (b)  Disturbance 
streamlines. The hatched region corresponds to negative values of the streamfunction. 

horizontal scale L is small compared to L, (a typical value of L, for the ocean is 
O( 100 km)) may become unstable for the baroclinic modes that satisfy A, < O( l), as 
we expect from figures 6 and 9. 

4. Physical mechanisms 
The aim of this section is twofold. First, we give a clear physical interpretation of two 

baroclinic instability modes, i.e. the m = 1 (bending wave) and the m = 2 (elliptical 
deformation) modes. Second, an apparent contradiction between our result, which 
predicts the occurrence of order-€’( = a / b  - 1) instability in the limit of E’ + 0, and 
Dritschel’s stability criterion which states that a circular vortex patch is nonlinearly 
stable, is resolved. 

Let us consider the dispersion relation of an inertial wave on Rankine’s combined 
vortex (in the circular-vortex limit of e‘ +. 0). The streamfunction of the basic flow field 
is given in cylindrical coordinates (Y, 8, z) ,  as 

!Pi, = - i rz  for r < 1, !P out  =-$-:logr for r 2 1. (24a, b) 
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I I 

0 1 2 

a 
FIGURE 9. Contours of constant growth rate of the even instability modes. The horizontal axis is the 
vertical wavenumber h and the vertical axis is a/b.  The contour interval is 0.01. The instability region 
touches the A-axis at the origin. 

Since the disturbance streamfunction satisfies the Helmholtz equation, we can 
introduce the following normal modes : 

$in = aI,(Ar)f(z) ei(mH-ot) for r < 1, (25 4 
$but = bK,(Ar)j(z) ei(mti-wt) for r > 1, (25 b) 

(26) Sr = cf(z) ef(mo--"t) 

Here, I ,  and K, denote modified Bessel functions of the inth order. The boundary 
conditions corresponding to (1 3 a, b) and (14) are imposed at r = 1 : 

( r  - 1 - Sr) = 0, 

These three equations form a set of linear, homogeneous equations in a, b and c and 
are mutually consistent if the determinant of their coefficients is zero. This leads to the 
dispersion relation 

It should be noted that (29) is the dispersion relation in a stationary frame, which 
differs by Q,=, = from (21) (putting a = b), which is the dispersion relation in a 
rotating frame. Figure 10 shows the dispersion relation of the bending mode m = 1, 
where the horizontal and vertical axes are h and o, respectively. We notice, at once, the 
meaning of the critical wavenumber A, = 1.7046 that appeared in the previous section 
(figure 6). It corresponds to w, = 0.25, which is the rotation rate of the m = 2 
barotropic wave, i.e. iw(2,O). The bending baroclinic wave of A, = 1.7046 rotates in 
phase with the elliptic deformation wave and the resonant interaction between these 
two waves seems to cause the instability. Dritschel's nonlinear-stability bounds, 

w(m, A)  = m[$- I,@) K,(A)]. (29) 
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FIGURE 10. Dispersion relation of the bending wave (rn = 1) on Rankine’s combined vortex. The 
horizontal axis is the vertical wavenumber A and the vertical axis is ~ ( 1 ,  A). Note that o ( 1 ,  A,) = 0.25. 

however, strongly constrain the time-evolution of a circular vortex patch. Weakly- 
nonlinear interactions between two waves should be considered in more detail, before 
drawing a conclusion. 

Let us study the resonant interaction between the bending baroclinic wave of 
h = A ,  and the m = 2 barotropic wave, following the procedure of multiscale 
expansions (e.g. Craik 1985). We introduce disturbances, up to second order, of the 
form 

@: = eA(7) N h ( z )  ei(0-t/4) + 1 4 e ~ ( 7 )  r~ e2i(s-ti4) + C.C. + e’~,@), (30a) 
44(h,)  

t n  

6r = eA(7)f,(z) ei(s-t’4) + eB(7) ezi(’jti4) +c.c. + e28r(2). (3  1) 

Here, 7 = et denotes a slow time variable andf,(z) is the eigenfunction corresponding 
to A,. From (31), we notice that the semi-major and semi-minor axes of the ellipse are 
a = 1 + 2eB and b = 1 - 2eB, respectively, so the ratio a / b  is given by 1 + 4eB( = 1 + e’). 
Substituting (30a, b) and (31) into the nonlinear boundary conditions imposed at 
Y = 1 + SY (whose linear forms are (27a, b) and (28)), we get inhomogeneous equations 
for the second-order quantities. The solvability conditions yield the time evolution of 
A and B, as (see Appendix for details) 

where 

1- . dA = aAB, i- dB = P A ,  2 
d7 d7 

( 3 3 )  
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The integral factor (34) measures the magnitude of the coupling offl(z) with the 
barotropic mode. Here, the differential operator L, is assumed to have the form (2a) 
(i.e. for atmospheric synoptic-scale phenomena) 

We have chosen this L, because it is convenient in a comparison with Dritschel's result. 
We can take the 'standard' density p6 to be unity for oceanic synoptic-scale phenomena 
(see (2b) and (22)). 

We now consider (32a, b). If we are interested in the linear stability of a slightly 
elongated ellipse a /b  = 1 +t., we may put B = (then we have t.' = t.) and follow only 
the time evolution of (32a). We find a solution that grows exponentially: 

A = ~ ~ ( o ) l  e(a7-i77)/4 

This explains the order-€'( = c)  instability found in the previous section. In fact, the 
amplification factor ta = 0.0815 is close to the numerically evaluated value 0.081 and 
the phase shift of 7c/4 can be evaluated in figure 2(a), although a/b-  1 = 1 is not so 
small there. Thus, the resonant interaction between these two waves does play a key 
role in the baroclinic bending wave instability. 

At first sight, it seems that the presence of such an instability and Dritschel's strong 
stability theorem contradict each other. However, it is now clear that the linear 
instability of an infinitesimally deformed (elliptic) vortex patch does not imply weakly 
nonlinear instability of a circular vortex patch. It is not difficult to see, from (32a, b), 

(36) 

that 

This describes the conservation of a second-order quantity, and it is an approximate 
formula (up to second order) for the mean normal displacement of a vortex boundary 
from its undisturbed circular position, found by Dritschel (1988 a,  equation (9)). The 
bending instability will saturate unless the basic elliptical deformation is maintained 
somehow. Any ellipse, more generally, can be thought of as an irrotationally deformed 
form of a circle (of radius (ab);) and its nonlinear evolution is strongly constrained by 
Dritschel's stability bounds. It would be interesting to investigate the later stage of 
nonlinear baroclinic development of a perturbed Kirchhoff s elliptic vortex. 

Similarly, we can get a clear physical interpretation of the even instability mode, if 
we consider the weakly nonlinear evolution of the m = 2 barotropic wave. Instead of 
(30a, b) and (31) we introduce disturbances of the form: 

= +,5C(7,9 y2 e2i(H--t/4) + C.C. + €2@;g) + s 3 q k ; p ,  

+ C.C. + t.2?&:',"1+ €";;!,"1, 

(38 4 

(38 b) 

(39) 
where 7 and [ denote slow variables s2t and e(z- C, t),  respectively, with C, the group 
velocity (ao/ah),,,. Substituting (38~1, b) and (39) into the boundary conditions (27a, 
b) and (28), we obtain inhomogeneous equations for the second- and third-order 
quantities. The solvability condition of the second-order equation gives C, = 0, 
whereas that of the third-order equation yields a nonlinear Schrodinger equation : 

2i(O-t/4) € 
@;ut = p C(7, <I e 

& = eC(7,9 ezi(O-ti4) + C.C. + e2sr(2) + e3Rr(3), 
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with 

and v = 2. Dritschel (1988h) presents an analysis of weakly nonlinear evolution of a 
barotropic wave with general azimuthal wavenumber. The finite-amplitude solution 
C = C, e2l''i7 (weakly nonlinear Kirchhoff s ellipse) becomes unstable to a long-wave 
disturbance 0 < A < 41/3tC, (Benjamin-Feir instability; see Benjamin & Feir 1967). If 
we take, again, C,, = for an ellipse of a / b  = 1 +t ,  then an unstable A-range of width 
2/3s is expected in the limit of c +  0 with a maximum growth rate ;e2 at A = 1/6/2e. 
This is the physical interpretation of the m = 2 long-wave instability. Since a nonlinear 
Schrodinger equation is completely integrable and has an infinite number of conserved 
quantities, our findings are again consistent with Dritchel's stability criterion. 

5. Summary and discussion 
We have investigated the linear baroclinic instability of Kirchhoff s elliptic vortex, 

under the quasi-geostrophic, fplane approximation. Any ellipse, irrespective of the 
ratio a/b( = semi-major axis/semi-minor axis), is shown to be unstable to the m = 1 
bending mode and the m = 2 elliptical deformation mode. We have made an attempt 
to find a physical interpretation of these instability modes in the limit of small 
ellipticity. The former instability occurs as the result of resonant interaction between 
the baroclinic bending wave and the barotropic elliptical deformation wave. The latter 
instability can be thought of as a sideband (Benjamin-Feir) instability of a finite- 
amplitude m = 2 barotropic wave. 

Recent numerical calculations of geostrophic turbulence (e.g. McWilliams 1989, 
1990) demonstrate the emergence and growth to dominance of isolated, coherent 
vortices in the later stage of their time evolution. It would be of interest to consider the 
roles of the baroclinic instabilities found in this paper, for example the absence of 
highly elongated vortices. Such considerations, however, should not neglect the 
influence of the strain field locally imposed on a vortex. A strain field seems to enhance 
baroclinic instabilities, since it plays an essential role in the three-dimensional 
destabilization of a coherent vortex in a homogeneous fluid (e.g. Widnall, Bliss & Tsai 
1974; Moore & Saffman 1975; Tsai & Widnall 1976). Although details are left for 
future work, we have already found that the bending instability is enhanced in 
magnitude but that its instability A-range moves to the left (long-wave direction) for the 
stationary strained ellipse considered by Robinson & Saffman (1 984) (see also Moore 
& Saffman 1971). 

Kida (198 1) investigated the two-dimensional motion of an elliptical vortex patch in 
a uniform background strain and vorticity field. He showed that the elliptical shape is 
retained whereas the axis ratio a / b  changes with time. Dritschel (1990) studied the 
barotropic instability of the periodic Kida solutions and found that a significant 
portion of the periodic solutions is linearly unstable. Our next problem is to investigate 
the baroclinic instability of the Kida-type vortex under the quasi-geostrophic 
approximation. 

We are grateful to Dr Y. Fukumoto for valuable comments and discussions during 
this study. We owe much to K. Hirahara in preparing the figures. 
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Appendix. The derivation of (32a, b) with (33) and (34) 

we rewrite the three boundary conditions imposed at r = 1 +6r  as 
General discussion on resonant wave interactions is presented in Craik (1985). First, 

y i n  +@in = y o u t  + @ L t ,  (A 1) 

(A 2) 
a a 
-(Yza (3r +?u = ~ ( ~ o u t + $ L ) 9  

Substitution of (25a, 6) and (26) into (A l t ( A  3) yields the linear relations: 

(A 4) 
0 o - irn 

We obtain the dispersion relation (29) by putting the determinant of L, to be zero. 
Let us consider the resonant interaction. Substituting (30~1, b) and (31) into 

(A 1)-(A 2) and collecting the terms proportional to . f , ( ~ ) e ’ ( ~ ~ ~ l ~ ) ’ ,  we have the 
second-order inhomogeneous equations : 

Here, the superscript (2) denotes the order of quantities and the subscript 1 denotes the 
azimuthal wavenumber m = 1. The solvability condition of (A 5 )  is given as 

which leads to (32a) with (33).  Similarly, collecting the terms proportional to eZi(Opti4), 
we have 1 
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where the coefficient y represents the coupling coefficient between f , " ( z )  and the 
barotropic mode : 

The solvability condition of (A 7) is given (taking the limit h+O in (A4)) as 

= 0, 

which yields (32b) with (34). 

R E F E R E N C E S  

ABRAMOWITZ, M. & STEGUN, I .  A. 1972 Handbook of Mathematical Functions. Natl Bur. 

BENJAMIN, T. B. & FEIR, J. E. 1967 The disintegration of wave trains on deep water. J .  Fluid Mech. 

BLANCH, G. 1966 Numerical aspects of Mathieu eigenvalues. Rend. Circ. Mat. Palermo (2) 15, 

CARTON, X. J. & MCWILLIAMS, J. C. 1989 Barotropic and baroclinic instabilities of axisymmetric 
vortices in a quasi-geostrophic model. In MesoscalelSynoptic Coherent Structures in Geophysical 
Turbulence (ed. J. C .  J. Nihoul & B. M. Jamart), pp. 225-244. Elsevier. 

CLEMM, D. S. 1969 Algorithm 352: Characteristic values and associated solutions of Mathieu's 
differential equation. Commun. Assoc. Computing Machinery 12, 399-407. 

CRAIK, A. D. D. 1985 Wave Interactions and Fluid Flows. Cambridge University Press. 
DRITSCHEL, D. G. 1988 a Nonlinear stability bounds for inviscid, two-dimensional, parallel or 

circular flows with monotonic vorticity, and the analogous three-dimensional quasi-geostrophic 
flows. J .  Fluid Mech. 191, 575-581. 

DRITSCHEL, D. G. 1988 b The repeated filamentation of two-dimensional vorticity interfaces. J. Fluid 
Mech. 194, 511-547. 

DRITSCHEL, D. G. 1990 The stability of elliptical vortices in an external straining flow. J .  Fluid Mech. 

FLIERL, G. R. 1988 On the instability of geostrophic vortices. J. Fluid Mech. 197, 349-388. 
GENT, P. R. & MCWILLIAMS, J. C. 1986 The instability of circular vortices. Geophys. Astrophys. Fluid 

Dyn. 35, 209-233. 
KIDA, S. 1981 Motion of an elliptic vortex in a uniform shear flow. J. Phys. Soc. Japan 50, 

35 17-3520. 
KLOOSTERZIEL, R. C. 6t CARNEVALE, G. F. 1992 Formal stability of circular vortices. J. Fluid Mech. 

LOVE, A. E. H. 1893 On the stability of certain vortex motions. Proc. Lond. Math. SOC. 25, 1842. 
MCWILLIAMS, J. C. 1989 Statistical properties of decaying geostrophic turbulence. J. Fluid Mech. 

MCWILLIAMS, J. C. 1990 The vortices of geostrophic turbulence. J.  Fluid Mech. 219, 387-404. 
MEACHAM, S. P. 1992 Quasigeostrophic, ellipsoidal vortices in a stratified fluid. Dyn. A m o s .  Oceans 

MOORE, D. W. & SAFFMAN, P. G. 1971 Structure of a line vortex in an imposed strain. In Aircraft 

MOORE, D. W. & SAFFMAN, P. G. 1975 The instability of a straight vortex filament in a strain field. 

Stand. /Dover. 

27, 417-430. 

51-97. 

210, 223-261. 

242, 249-278. 

198, 199-230. 

16, 189-223. 

Wake Turbulence (ed. J. Olsen, A. Goldburg & N. Rogers), pp. 339- 354. Plenum. 

Proc. R. Soc. Lond. A 346, 413425. 



Baroclinic instability of Kirchhofs elliptic vortex 27 1 

PEDLOSKY, J. 1979 Geophysical Fluid Dynamics. Springer. 
ROBINSON, A. C. & SAFFMAN, P. G. 1984 Three-dimensional stability of an elliptical vortex in a 

SALE, A. H. J .  1970 Remark on algorithm 352 [S22]; Characteristic values and associated solutions 

TSAI, C.-Y. & WIDNALL, S. E. 1976 The stability of short waves on a straight vortex filament in a 

WIDNALL, S. E., BLISS, D. B. & TSAI, C.-Y. 1974 The instability of short waves on a vortex ring. 

straining field. J .  Fluid Mech. 142, 451466. 

of Mathieu’s differential equation. Commun Assoc. Computing Machinery 13, 750. 

weak externally imposed strain field. J.  Fluid Mech. 73, 721-733. 

J .  Fluid Mech. 66, 35-47. 


